Фара для велосипеда с динамо генератором

Датчик мощности.

Хороший вольтметр достаточно важная часть генератора. Он нужен для оценки результата затрачиваемых сил и для демонстрации аудитории. Генератор может работать и без него, но всё же нужно как-то оценивать свои результаты. Подходят только аналоговые вольтметры, так как цифровые не подходят для измерения постоянно меняющегося напряжения. По этой причине в автомобильных спидометрах и датчиках по прежнему используются аналоговые приборы. Мы используем аналоговый вольтметр со смещённым нулём, который может показывать только напряжение больше 12 вольт. Если напряжение опустилось ниже 12 вольт, то это может произойти только при неисправном аккумуляторе. У вольтметра со смещённым нулём при запуске генератора резко дёргается стрелка — это смотрится достаточно эффектно. Обычно я использую схему, основанную на самом дешёвом измерительном приборе из каталога Maplin, но вы можете купить более серьёзные измерительные приборы.

Схема измерительного прибора довольно простая. Опорный диод не проводит ток ниже 11 В, то есть можно сказать, что он вычитает 11 В напряжения. С помощью резистора мы превратили вольтметр с диапазоном измерения 0 – 4 вольт в измерительный прибор с диапазоном от 11 до 15 вольт. У вольтметров, установленных на наших генераторах, в действительности даже ещё более узкий диапазон, с опорным диодом на 12 В и диапазоном 2,5 В. В схему управляющего модуля добавили дополнительный резистор и переключатель на три позиции, распределив сопротивление между аккумулятором и генератором и тем самым мы адаптировав генератор для людей с любой физической форме. Если требуется минимизировать потери энергии в цепочке резисторов, то можно добавить переключатель, замыкающий все резисторы, что позволит людям в хорошей физической форме быстрее заряжать аккумулятор.

Читайте продолжение, в котором будут даны инструкции по правильной эксплуатации генератора.

Сборка.

Начнём с радиатора. Нам понадобится болт M10, шайба, гайка M10.
Для оптимальной фокусировки фары Busch+Müller Lumotec Halogen видимая длина резьбы болта должна составлять 31.5 мм. В других фарах для настройки фокусировки возможно потребуются болты другой длины. Начиная от кончика болта по его краю прорежьте две выемки длиной 2 см (в области резьбы). Они предназначены для кабелей к светодиоду.

Удалите лампочку и цилиндрическую пружину сзади фары.
Просверлите отверстие 9.5 мм точно через центр пластмассовой части.
Выверните 2 контакта и припаяйте тонкие проводки к ним.
Установите радиатор через только что просверленное отверствие. Нанесите клей на резьбу для того, чтобы радиатор оставался на своём месте и не вращался.
Припаяйте светодиод к проводкам с соблюдением полярности.

Теперь приклеиваем светодиод к концу болта теплопроводящим клеем. Я использую клей на основе серебра производства «Arctic Silver». Он широко распространён в компьютерной индустрии.
Убедитесь, что светодиод точно отцентрирован по отношению к пластмассовой части (возможно даже не точно посередине болта)!
Как только правильно установите светодиод, прижмите его неодимовым магнитом к болту, пока клей не засохнет.

Протолкните кабели в желобки вдоль болта и приклейте их.Соберите заднюю часть и рефлектор. Готово!

Модифицированный фонарик электрически не совместим со стандартным фонариком.
Для подключения к динамо-машине соберите одну из схем представленных на странице схем светодиодных драйверов фар к динамо-машинам.

Примечание 1:Возможно по схеме динамо-машину и фонарик необходимо подсоединять к велосипедной раме.

Примечание 2:
Фонарик Lumotec Halogen содержит диод защиты от перегрузки по напряжению, который срабатывает выше 9 В. Напряжение светодиода никогда не будет выше этого уровня, поэтому его можно не удалять.

Инструменты.

Для измерения электрических характеристик велосипедных динамо-машин мы создали инструмент, который измеряет скорость велосипеда основываясь на количестве оборотов генератора за минуту:

Собрали его из фонарика Panasonic и велокомпьютера Trelock FC 404. Также необходимо дополнительная схема (смотрите ниже) ограничения переменного напряжения динамо-машины и понижения его до частоты, которую может обработать велокомпьютер.

Сначала мы пытались использовать дешёвый велокомпьютер, но вскоре обнаружили, что он сильно округляет показания на высокой скорости. Поэтому заменили его на фирменный Trelock FC 404, который показывает скорость с точностью до десятых долей км/час.

Чтобы правильно выставить в велокомпьютере окружность колеса, необходимо знать диаметр колеса и число полюсов магнита динамо-машины. Большинство бутылочных динамо-машин имеют 8 полюсов — их можно почувствовать, как 8 шагов при обороте колеса (или измерить 4 полных синусоиды за один оборот). Формула расчёта окружности колеса, вводимой в велокомпьютер:
2πDn/p, где D – диаметр колеса, n – коэффициент деления CD4060 (Q4=16), p – количество полюсов магнита.

Для измерений приведённых ниже также используются мультиметр, осциллограф, лабораторный блок питания и регулируемая нагрузка, основанная на микросхеме линейного регулятора LM317T.

Динамо-зарядник

В полевых условиях всегда пригодится простая «крутилка», динамо-машина для зарядки телефона. Актуальными являются зарядники со встроенным аккумулятором. Встречаются механические зарядники, также не занимающие много места. Многие современные «крутилки» снабжены фонариками.

Данные устройства вполне успешно заряжают мобильные телефоны. Например, при вращении ручки 2-3 оборота в секунду можно получить значение коэффициента от 0.65 до 2.5. Пару минут покрутил и можно говорить по телефону от 2 до 5 минут. Все зависит от модели и условий приема. Ручная динамо-машина не сможет снабжать мощный смартфон с большим дисплеем. Механическая зарядка обеспечит результат в связке с простым телефоном вместе с гарнитурой hands-free.

Зарядка динамо-машина сработает результативно при полностью разрядившемся аккумуляторе, но повысить заряд телефона кручением рукоятки можно только до 50%. Когда аккумулятор разряжен только наполовину, «крутилка» становится бесполезной игрушкой. Если в инструкции указан максимальный ток зарядки – 400 mA с мощностью 2 Вт, то дополнительную энергию выжать не удастся даже при быстром вращении рукоятки.

Регулировка динамо-машины

  • Закрепляем щетки так, чтобы они слегка касались коллектора и сильно не затормаживали его вра­щение.
  • Проверим правильность соединений, отсутствие обрывов и замыканий. Подключаем к механизму батарею в 15-20 вольт. Если мотор работает, якорь быстро вращается, значит, динамо-машина своими руками собрана правильно.
  • После проверки динамо-машину соединяем с при­водом, например от ножной швейной машины. К щеткам присоединяем напря­жение от батареи в 10 вольт, чтобы намагнитить электромагниты. Через минуту батарея должна отключиться, тогда начинаем быстро вращать якорь с помощью привода. К проводам от щеток подключаем вольтметр или лампу в 12 вольт. Если все собрано правильно, вольтметр будет показывать напряжение, а лампочка – накаливаться.
  • С помощью равномерного вращения якоря надо слегка повернуть щеткодержатель в сторону вращения якоря, тогда щетки будут меньше искрить и лучше снимать напряжение. Опытным путем отрегулируем установку щеток.

Конструктивные особенности динамо втулки

Поскольку этот тип генератора набирает популярность, остановимся на некоторых его особенностях, которые необходимо знать и понимать.

Прежде всего, если бутылочный генератор вырабатывает постоянный электрический ток, то динамо втулка для велосипеда генерирует переменное напряжение. В чем разница? Попробуем разобраться, не углубляясь излишне в электродинамику.

Постоянный ток имеет полюса: «плюс» и «минус». Такой ток всегда течет в одном направлении от плюса к минусу. Переменное напряжение не имеет полярности. Для того, чтобы горела обычная лампа накаливания, не имеет значения то, какой будет ток, постоянный или переменный. Но для светодиодной фары все обстоит иначе: светодиоды будут работать только при постоянном токе и правильном подключении. Если устанавливается динамо втулка на велосипед, то подключать светодиодную фару необходимо через специальный выпрямительный мост. Это будет актуально для любых потребителей энергии, рассчитанных на питание от источника постоянного тока.

генератор 12 вольт для велосипеда

Новое изобретение, которое может сделать революцию в оснащении велосипеда электрооборудованием. Генератор может вырабатывать электрическую энергию, не прикасаясь к колесу, как классические генераторы. На рынке есть некоторые модели, которые также вырабатывают электричество не соприкасаясь с колесом, но при этом на колесе должны располагаться магниты.

В сети встречаются в основном контактные варианты велогенераторов, основанные на использовании трущихся частей. Электроэнергия, вырабатываемая такими устройствами достаточна для зарядки аккумулятора, который питает передний и задний фонари велосипеда. Недостатками таких заводских и самодельных генераторов для велосипеда являются сопротивление, которое они создают при езде и шум. Поэтому идея бесконтактного велогенератора представляется полезной и перспективной.

В этом видео я подробно расскажу как шиповать старую покрышку саморезами. Готов к зимним покатушкам.

Большая часть велолюбителей, каковые вынуждены ездить в вечернее либо ночное время суток знают, что это оно есть самоё опасным с позиций попадания в ДТП. На подавляющей территории России не существует намерено выделенных велодорог. Исходя из этого, велосипедист должен быть уверен в собственном транспорте. Хорошим выбором станет велосипед giant xtc jr 2 v2 24 Сигнальные огни для большой заметности на дороге. Велоиндустрия предлагает широкий выбор аналогичного оборудования. Но необходимо осознавать, что все они для работы требуют электрического питания.

English Help. By continuing to browse, you consent to our use of cookies. You can read our Cookies Policy here. В гостях у Самоделкина – самоделки своими руками.

Бесконтактный велосипедный генератор

Бутылочный и кареточный генераторы выдают электроэнергию, соприкасаясь с движущимся колесом. Динамо-втулка является встроенным элементом колеса. Бесконтактный генератор никак не прикасается к колесу, не создает сил трения и сопротивления вращению. Вихревые токи образуются за счет близкого расположения плоскости вращения намагниченного обода и сильного магнита.

Фары встроены прямо в устройство, передача электричества идет напрямую через выпрямляющий мост. К неоспоримым достоинствам этого генератора относятся:

  • отсутствие кабелей;
  • нет силы трения и сопротивления со стороны устройства;
  • небольшой вес конструкции – не более 60 г.

Бесконтактные источники энергии можно смело применять на шоссейных велосипедах для дальних путешествий

Приборы крепятся парно: на вилку – передняя фара, на перо – задний катафот. Фактически это самостоятельные фонарики, только работают они не от батареек, а через вращение колес в магнитном поле. Светимость ламп находится на уровне или превышает аналогичный параметр аккумуляторных световых приборов.

При замедлении колеса интенсивность вихревых токов снижается, лампочки должны тускнеть, а при остановке колеса – полностью гаснуть. Для обеспечения равномерного света и возможности использовать свет даже на стоянке, в конструкции предусмотрен конденсатор («батарея» для получения электроэнергии), который наполняется при движении велосипеда.

О динамо втулках

С тех пор прошло более четверти века. Появились мощные ёмкие аккумуляторные батареи и, самое главное, экономичные и яркие источники света, такие, как светодиоды. Но самое главное, в РФ широко распространился другой тип динамо, распространившийся в мире с конца 1950-х годов. Он называется динамо втулка.

Динамо втулка на переднюю вилку. Хорошо заметно, что с разных сторон установлены спицы разной длины.

Это устройство просто совмещает функцию колёсной втулки и функцию выработки электроэнергии. Они впервые начали изготавливаться в Великобритании. Их стоимость колеблется от 50 до 300 долларов и выше.

В стандартной втулке производится ток напряжением 6 В, а мощность составляет на выходе порядка 2 Вт. Новые втулки способны генерировать до 3 Вт. Так как каждой выходной мощности соответствуют свои источники света, то не стоит ставить более мощный фонарь на втулки с более низкой выходной мощностью, иначе свет будет тусклым.

Светодиод мощностью 3Вт способен ослепить человека на несколько секунд даже в ясный день, а в темноте, с использованием оптики он будет служить очень хорошо.

Динамо втулка

Второй вид, популярность которого неизменно растет — так называемая, динамо втулка.

В данном случае, динамомашина для велосипеда конструктивно выполнена как колесная втулка. Выходное напряжение таких генераторов составляет порядка шести вольт при мощности до двух, а иногда, трех ватт.

Все преимущества такой динамо-машины для велосипеда, определяются ее конструктивной особенностью. К числу «плюсов» необходимо отнести:

  • Абсолютная бесшумность. Это достигается за счет конструктивного выполнения в виде втулки для колеса;
  • Динамо работает без использования эффекта трения, а потому не влияет на износ покрышки и иных деталей;
  • Полностью сбалансированная конструкция исключает дисбаланс на вилке;
  • Высокая эффективность. Поскольку нет трущихся поверхностей, проскальзывания не будет при любых погодных условиях;
  • Полная изоляция от стальной конструкции велосипеда электрической цепи проводки.

При всем том, динамо втулка не может быть отключена, при движении она работает постоянно. Некоторые специалисты считают этот момент недостатком, однако объективно, при отключенной нагрузке, динамо не будет влиять на свободу вращения колеса, а потому считать невозможность отключения за недостаток будет в корне неверно. Еще один момент – высокая масса, хотя при идеальной балансировке, это не влияет на ходовые качества велосипеда в той степени, в какой станет ощутимо на практике. Единственный серьезный недостаток – цена и сложность конструкции, а также то, что для установки такого генератора необходимо перебирать все колесо, а это, несомненно, требует определенных умений и подготовки.

Итак, выбирая, динамо для своего двухколесного друга, помните о безопасности, надежности и ориентируйтесь на ваши финансовые возможности. Какая будет динамка для велосипеда, решать, безусловно, вам и никому другому.

Мощный генератор своими руками

Мощный генератор электроэнергии можно собрать, используя старый велосипед без восьмерок на заднем колесе. Подойдет 28-дюймовое колесо и передняя звездочка на 52 зуба, но возможны и другие варианты, например, 26-дюймовое и звездочка на 46 зубов. В первую очередь снимаем ненужные детали: переднее колесо, покрышки, переключатель передач, тормоза. Устанавливаем велосипед на подставку.

Генератор должен быть автономным с двумя большими клеммами и одной маленькой. Две большие клеммы соединяем вместе, образуя плюс, а маленькую – с индикаторной лампочкой. Клемму заземления соединяем с корпусом (минус). Чистим генератор, снимаем с него вентилятор охлаждения. Закрепляем генератор на кронштейне за сидением, шпиндель должен находиться снаружи на 10-12 см от обода. Подбираем ремень, желательно зубчатый, окружностью примерно 82 дюйма. Для колес по 26 дюймов подойдут ремни A78, а для 27-дюймовых колес – A80.

Для регулировки натяжения генератора переменного тока используем натяжитель пружинного типа. Ремень не надо затягивать сильно, так как вращающий момент довольно низок. На руль закрепляем вольтметр, выключатель и лампочку. Если в доме есть дети, необходимо защитить движущиеся частям механизма, чтобы исключить возможность травматизма.

Бутылочный велогенератор: особенности, плюсы и минусы

Познакомимся с другим источником энергии — бутылочным, или «шинным» преобразователем.

Бутылочный электрогенератор — закрытый корпус с вращающимся резиновым роликом снаружи, закрепленный на переднюю вилку. В корпусе находится непосредственно преобразующее устройство — обмотка и магниты. Движение магнитного поля достигается за счет зацепления ролика с покрышкой и прямой передачи на него механической энергии с колеса. Чем выше скорость движения, тем сильнее полярность внутри генератора и больше выдаваемое напряжение.

Преимущества «бутылок»:

  • возможность отключить за ненадобностью — достаточно отодвинуть ролик вбок;
  • легко установить на любой тип велосипеда;
  • недорогие в сравнении с втулочными генераторами.

К слабым сторонам относятся:

  • весовой перекос: масса порядка 250 г, крепится «бутылка» с одной стороны;
  • низкая эффективность в мокрую погоду — ролик проскальзывает по покрышке;
  • шум, высокое трение на скоростях;
  • износ боковин покрышек;
  • долго регулировать наклон и положение.

Отдельно стоит упомянуть кареточный велосипедный генератор. Корпус его закреплен в области педального узла — каретки, под нижними перьями. Вращение магнитному устройству задается роликом, который находится в зацеплении с задним колесом байка. Фиксацию ролика на покрышке обеспечивает зажимная пружина.

Механические конструкции фар и фонариков.

Самодельный велосипедный задний светодиодный фонарь.

Универсальная конструкция заднего диодного фонаря, собранная своими руками
Дешёвая мигалка на велосипед
Очень надёжный, с защитой от воды
Собран из доступных компонентов

Схема самодельного светодиодного фонарика на литий-ионных аккумуляторах (устройство)

Самодельный аккумуляторный фонарь 1.5 Вт на светодиодах
Универсальный яркий карманный фонарик для различных применений, собранный своими руками
Лёгкий литий-ионный аккумулятор, хорошо работающий при низких температурах

Собираем мощную галогеновую фару сами

Максимальное количество галогенового света за малые деньги
Собрана из доступных компонентов, можно собрать за полдня

Схемы с большой мощностью и хорошей производительностью на низкой скорости.

Схема 8 — добавляем удвоитель напряжения.

Схема 7, использующая много светодиодов, на низкой скорости выдаёт маленькую мощность, что видно на кривых мощности выше. Существует несколько способов решения данной проблемы:

  1. Шунтировать несколько светодиодов, подключить конденсаторы и таким образом изменить схему с включением меньшего количества светодиодов, что улучшит её на низкой скорости.
  2. Параллельная сборка скажем 6-ти светодиодной и 3-х светодиодной версий. Переключателем подбираем более подходящую. 6-ти светодиодная версия может давать узкий пучок дальнего света, 3-светодиодная — широкий пучок на низкой скорости.
  3. Подключение мостового выпрямителя к удвоителю напряжения. Такая схема будет работать так, если бы она имела только половину светодиодов.

Первое решение нуждается в сложном переключении и неработоспособно при отключении хоть одного светодиода. Второе решение лучше первого, несложно в построении, но требует дополнительных светодиодов и оптики. Третье решение недорогое и простое, независимо от режима работают все светодиоды. Его и будем рассматривать далее.

Немного изменённая схема 7. Справа удвоитель напряжения Гриначера. Ниже представлена схема 8, включающая обе схемы. Два режима чередуем обычным переключателем.

Эта схема (без R1, C2, C3) пользуется популярностью в компьютерных блоках питания. Основное её предназначение — выбор режима 115/230 В.

Режимы не перекрывают друг друга и следовательно гарантируют хорошую производительность на низкой скорости. Схема 7 обоснована! Далее приведён список компонентов для различных конфигураций схемы 8.

 Бутылочная динамо-машинаДинамо-втулка
 3 светодиода4 светодиода3 светодиода4 светодиода6 светодиодов
Общая мощность4.6 W5.7 W5.2 W6.7 W10.5 W
D1..D41N58181N58181N58181N58181N5818
C12200uF 16V2200uF 16V4700uF 16V4700uF 16V2200uF 25V
C2, C3100uF 100V47uF 100V1000uF 63V470uF 100V220uF 100V
C4, C5100uF 63V47uF 63V470uF 35V470uF 35V220uF 63V
R147K 0.25W47K 0.25W47K 0.25W47K 0.25W47K 0.25W
SW1120VAC 2A120VAC 2A120VAC 2A120VAC 2A120VAC 2A
LED1Мощный LEDМощный LEDМощный LEDМощный LEDМощный LED
LED2Мощный LEDМощный LEDМощный LEDМощный LEDМощный LED
LED3Мощный LEDМощный LEDМощный LEDМощный LEDМощный LED
LED4Не нуженМощный LEDНе нуженМощный LEDМощный LED
LED5Не нуженНе нуженНе нуженНе нуженМощный LED
LED6Не нуженНе нуженНе нуженНе нуженМощный LED

Рассмотрим кривые производительности. Нижняя кривая каждого цвета показывает мощность светодиодов в режиме удвоителя напряжения

Обратите внимание, что этот режим работает лучше только на низкой скорости, а выше определённой скорости выигрывает режим мостового выпрямителя. Второй график показывает момент, когда необходимо переключаться на другой режим

Давайте рассмотрим ещё один интересный вариант схемы 8:

Схема 9 — вариант схемы 8.

Схема выше имеет практически такую же мощность и почти те же самые компоненты что и схема 8. Главное отличие в переключателе: он не только выбирает режим низкой скорости (удвоитель) и режим высокой скорости (мостовой выпрямитель), но имеет положение ВЫКЛЮЧЕНО, которое используется при подаче питания от динамо-втулки. SW1 — это переключатель 1P2T с изолированным центральным положением. Эти переключатели широко доступны.

Другая особенность схемы 9 — задний фонарь. В отличие от схемы 8 светодиод 1 красный.

Схема 10 — ещё один вариант схемы 8.

 Бутылочная динамо-машинаДинамо-втулка
 3 светодиода4 светодиода3 светодиода4 светодиода6 светодиодов
Общая мощность4.6 W5.7 W5.2 W6.7 W10.5 W
D1..D41N58181N58181N58181N58181N5818
C12200uF 16V2200uF 16V4700uF 16V4700uF 16V2200uF 25V
C2, C3100uF 100V47uF 100V1000uF 63V470uF 100V220uF 100V
R147K 0.25W47K 0.25W47K 0.25W47K 0.25W47K 0.25W
SW1120VAC 2A120VAC 2A120VAC 2A120VAC 2A120VAC 2A
LED1Мощный LEDМощный LEDМощный LEDМощный LEDМощный LED
LED2Мощный LEDМощный LEDМощный LEDМощный LEDМощный LED
LED3Мощный LEDМощный LEDМощный LEDМощный LEDМощный LED
LED4Не нуженМощный LEDНе нуженМощный LEDМощный LED
LED5Не нуженНе нуженНе нуженНе нуженМощный LED
LED6Не нуженНе нуженНе нуженНе нуженМощный LED

В схеме 10 исключены два из четырёх конденсаторов, но вместо них добавлены сложные переключатели. Теперь не нужны большие конденсаторы в компактной схеме. Как и в схеме 9 для выключения света может использоваться переключатель с изолированной центральной позицией.

Схема 11 — учетверитель напряжения.

Если вы хотите серьёзно взяться за концепцию умножения напряжения, посмотрите мой черновик комбинированного удвоителя/учетверителя/мостового выпрямителя.

Измерения.

Максимальная мощность динамо-машин.

Установка: Динамо-машина, удвоитель напряжения Гриначера с двумя 1N5818 и двумя 1000uF, нагрузка 100 – 250 мА, спидометр подсоединённый к динамо-машине.

Методика: Запускаем динамо-машину на 15 км/час. Измеряем напряжение параллельно нагрузке по току 100, 130, 160, 190, 220, 250 мА. Повторяем на 40 км/час. Повторяем для каждой динамо-машины. Зная напряжение и ток подсчитываем мощность. Строим график мощности и тока.

Результаты: AXA HR выдаёт максимальную мощность при токе 200 мА (после удвоителя напряжения), B&M Dymotec6 при 180 мА, дешёвая динамо-машина при 160 мА. Вне зависимости от скорости у AXA HR самая высокая мощность, а у дешёвой динамо-машины самая низкая.

Выводы: Максимальная мощность достигается при определённом токе, она мало зависит от скорости, а преимущественно зависит от самой динамо-машины. Короче говоря: Динамо-машина — это источник тока.

Мощность и скорость Dymotec6.

Кривые для других моделей аналогичны кривой для Busch&Müller Dymotec6 с той только разницей, что мощность будет немного больше или меньше.

Установка: Dymotec6, удвоитель напряжения Гриначера с двумя 1N5818 и двумя 1000uF, нагрузка на 180 мА, спидометр.

Методика: Запускаем динамо-машину на 4, 5, 7, 9, 12, 15, 19, 24, 31, 40, 50 км/час и измеряем напряжение параллельно нагрузке. Подсчитываем для каждой скорости мощность =
измеренное напряжение × 180 мА тока и строим график.

Вывод: С хорошо подобранной нагрузкой на средней скорости Dymotec6 выдаёт 2.7 Вт, на высокой скорости 5 Вт и на очень высокой скорости 6 Вт. Данные показатели достигаются без изменения динамо-машины.Вопрос: Почему не перегорает лампочка в стандартной фаре на 3 Вт подключённой к Dymotec6 на скорости 50 км/час?Ответ: Потому что на такой скорости нагрузка подобрана неправильно (ток тоже большой) и лампочка не потребляет максимальную мощность.Вопрос: Где теряется энергия, если нагрузка не потребляет максимально возможную мощность?Ответ: Она не пропадает. Просто динамо-машина вращается с меньшим усилием. Попробуйте на полной скорости замкнуть выходы динамо-машины — ток сильно упадёт.

Производительность Dymotec6 при разной температуре.

Во время работы динамо-машины возрастает её температура. Мы тестировали B+M Dymotec6 на скорости 50 км/час при температуре 23º C. Подключены схема удвоителя Гриначера (два 1N5818 и два 1000uF) и нагрузка 180 мА. Измерялась выделяемая на нагрузке мощность. Эксперимент производился на стационарной платформе, поэтому динамо-машина не охлаждалась. Приблизительно через 20 минут её мощность снижается с 100% до 80%. Через 10 минут наблюдается ещё некоторое падение мощности. Через 30 минут температура корпуса составила 89º C. Внутри наверное ещё жарче.

Далее прикрутили обычный 80 миллиметровый компьютерный кулер для имитации охлаждения, которое возникает при движении на велосипеде. Мощность начала расти и в итоге достигла 89% от начального значения. Температура остановилась приблизительно на 40º C.

Для этого эксперимента была выбрана Dymotec6, так как в ней среди всех протестированных динамо-машин наилучшая механика. С ней ничего не случилось в течении двух часов при производстве 5 Вт энергии на скорости 50 км/час. Многие динамо-машины не выдерживают такую нагрузку. Из-за высокой внутренней температуры страдают подшипники, которые быстро изнашиваются. Если при вращении магнит приходит в соприкосновение со статором, то из-за трения резко увеличивается внутренняя температура, что приводит к оплавлению корпуса и заклиниванию ротора. На нашей установке это приведёт только к отсоединению мотора от динамо-машины, тогда как на реальном велосипеде переднее колесо может внезапно развалится вследствие разрушения валом ротора покрышки, обода или спиц. Поэтому лучше никогда не покупайте дешёвые динамо-машины.

Итоги тестирования динамо-втулок и бутылочной динамо-машины.

Вырабатываемый динамо-втулками свет — это надежный источник энергии в большинстве случаев

Дополнительное сопротивление было нами измерено и несомненно его важность переоценена. Оно имеет самое большое значение (в процентном отношении выходной мощности) на низкой скорости

На высокой скорости и на подъемах дополнительное сопротивление по сравнению с общей мощностью требуемой для движения велосипеда становится незначительным.

Если вы не ограничены в деньгах, то модель динамо-втулки SON28 является лучшим выбором для большинства велосипедистов. Она совмещает высокую эффективность и качественную конструкцию. С 2002 года модели динамо-втулок SON содержат уплотнитель компенсации давления, который препятствует появлению проблем с велосипедом в дождливую холодную погоду. Без специального уплотнителя при охлаждении относительно большой внутренний объем воздуха динамо-втулки сжимается и тем самым способствует проникновению влаги.

Динамо-втулка Shimano DH-3N71 неплохой выбор, но по сравнению с её предшественницей DH-3N70 у неё немного хуже производительность. Обе модели значительно тяжелее и менее эффективны, чем динамо-втулки SON. Более дешёвая модель DH-3N30 предлагает лучшую производительность, но весит на 200 грамм больше, потому что имеет подшипники и уплотнитель более низкого качества, так что более высокая цена динамо-втулки фирмы Shimano вполне оправдана. Ожидаемый срок службы конусов подшипника в недорогих динамо-втулках фирмы Shimano моделей (HB-NX32, DH-3N30) равен примерно 5000 км. Это говорит, что модель DH-3N30 предлагает удивительно хорошую производительность за свою цену.

Если бы не проблемы проскальзывания в сырую погоду, Lightspin могла бы послужить хорошей альтернативой динамо-втулкам. Её небольшой вес (даже включая вес крепления на передней втулке) и отсутствие сопротивления в дневное время привлекают велосипедистов, редко совершающих поездки в тёмное время суток. Когда включается свет на велосипеде, то сопротивление Lightspin возрастает до значения, превышающее значение у модели SON28 и современных динамо-втулок фирмы Shimano. Сложно добиться и поддерживать правильное крепление бутылочных генераторов, так что при её эксплуатации сопротивление может очень сильно варьировать.

Для велосипедистов, участвующих в различного рода соревнованиях, использование модели SON20 или удивительно легкой SON-XS с ободом больших размеров уменьшает сопротивление как в дневное, так и в ночное время. Особенно на скоростях от 25 до 35 км/ч. К их недостаткам можно отнести уменьшение светового потока на низкой скорости.

СкоростьПолная мощность, развиваемая велосипедистомСтандартная герметичная передняя втулкаSON28 (свет выключен)Снижение скорости (свет выключен)SON28 (свет включен)Снижение скорости (свет включен)
10 км/час15 Вт0,1 Вт+0,2 Вт (+1,3%)-0,1 км/час+3,3 Вт (+22%)-1,6 км/час
20 км/час50 Вт0,2 Вт+0,7 Вт (+1,4%)-0,1 км/час+5,3 Вт (+12%)-1,1 км/час
30 км/час130 Вт0,3 Вт+1,3 Вт (+1,0%)-0,1 км/час+6,7 Вт (+5,2%)-0,7 км/час
50 км/час500 Вт0,5 Вт+2,7 Вт (+0,5%)-0,1 км/час+9,0 Вт (+1,8%)-0,36 км/час

Насколько сложнее крутить педали на велосипеде с динамо-втулкой? В сравнении с велосипедом без динамо-втулки, таблица показывает требуемую дополнительную мощность поддержания той же скорости, а также снижение скорости при той же мощности — на ровной дороге. Только включение ночного сопротивления (свет включён) на низкой и средней скоростях замедлит велосипедиста значительно. На высоких скоростях, добавленное сопротивление (свет включен) менее значимо. На подъёмах, сопротивление динамо-втулки в процентном отношении от общего сопротивления даже меньше. Например, подъём на 5% склон на 10 км/час требует около 140 Вт. В этом случае 3,3 Вт потребляемые SON28 (свет включен) замедляет велосипедиста всего на 0,2 км/час.

Поделитесь в социальных сетях:vKontakteFacebookTwitter
Напишите комментарий